Welcome to the mAInthink blog – Algo-Math Intelligence meets Business Strategy and much more!
Dr. Igor Kadoshchuk- Computer Scientist


27.08.2025 - Sascha Rissel
ROI mit Algorithmen berechnen – Die Zukunft der Investitionsrechnung mit StratePlan™
Einleitung
Der Return on Investment (ROI) ist seit Jahrzehnten eine der wichtigsten Kennzahlen in der Unternehmensführung. Er zeigt, wie effizient ein Unternehmen mit Kapital umgeht und wie lohnend Investitionen tatsächlich sind. Doch während klassische ROI-Formeln und Investitionsrechnungen oft statisch und unflexibel bleiben, eröffnen moderne Technologien – insbesondere Künstliche Intelligenz – völlig neue Möglichkeiten.
Mit StratePlan™, einem Algorithmus gestützten Tool für strategische Planung und Simulation, wird es möglich, den ROI mit "KI" zu berechnen, Projekte realistisch zu simulieren und den größtmöglichen Return aus jedem investierten Euro herauszuholen. Dieser Beitrag zeigt, warum klassische Methoden an ihre Grenzen stoßen, wie ROI Simulationen Unternehmen helfen und weshalb Algorithmus-basierte Systeme wie StratePlan™ die Zukunft der Investitionsrechnung sind.
ROI Berechnung – die Grundlagen
ROI bedeutet „Return on Investment“ und beschreibt das Verhältnis zwischen Gewinn und Investition. Die Formel lautet:
Ein Beispiel: Investiert ein Unternehmen 100.000 Euro und erzielt daraus 150.000 Euro Gewinn, liegt der ROI bei 150 %.
Diese klassische ROI Berechnung ist einfach, aber sie hat ihre Schwächen: Sie berücksichtigt weder Risiken noch Wechselwirkungen zwischen Projekten. Sie ist eine Momentaufnahme – und genau hier setzt StratePlan an.
ROI Investitionsrechnung – Chancen und Schwächen
Die ROI Investitionsrechnung umfasst Methoden wie Kapitalwert, Amortisationsrechnung oder internen Zinsfuß. Diese Verfahren sind etabliert und liefern wertvolle Kennzahlen. Doch sie arbeiten oft mit fixen Annahmen und vernachlässigen Unsicherheiten.
Ein reales Beispiel: Ein Unternehmen plant drei Projekte – neue Software, eine Marketingkampagne und eine Auslandsexpansion. Klassisch werden diese isoliert berechnet. Doch die Realität ist komplex: Die Software beschleunigt Prozesse, die Kampagne steigert Verkäufe, und die Expansion hängt vom Erfolg der beiden ersten Projekte ab.
Nur mit Algo-basierten Simulationen lassen sich diese Wechselwirkungen wirklich darstellen. Genau hier punktet StratePlan™.
ROI mit Algorithmen berechnen – der Paradigmenwechsel
Der nächste logische Schritt ist: ROI mit Algorithmen berechnen. Anstatt Daten manuell zu erfassen und in Tabellen zu pflegen, übernimmt StratePlan™ die Analyse.
Vorteile:
- Automatisierte Datenintegration aus ERP-, CRM- oder BI-Systemen
- Berücksichtigung externer Faktoren wie Markttrends, Konjunktur oder regulatorische Änderungen
- Berechnung nicht nur einzelner Projekte, sondern ganzer Portfolios
So wird der ROI nicht mehr als statische Zahl gesehen, sondern als dynamische Kennzahl, die sich je nach Szenario verändert.
ROI Simulation – von Prognose zu Realitätstest
Eine klassische ROI Simulation rechnet oft nur ein „Best Case“ und ein „Worst Case“ durch. Mit StratePlan™ werden hunderte Szenarien automatisch simuliert.
Vorteile:
- Realistische Prognosen durch Machine Learning
- Risikoanalyse – welche Investition ist stabil, welche unsicher?
- Szenario-Vergleiche – wie wirkt sich eine Marktänderung auf den ROI aus?
Unternehmen erhalten dadurch ein viel klareres Bild und können Investitionen gezielt steuern.
Projekt ROI Simulation – Fokus auf das Wesentliche
Gerade für einzelne Projekte lohnt sich eine Projekt ROI Simulation. StratePlan™ zeigt:
- Welches Projekt kurzfristig den höchsten Return liefert
- Wo langfristig Synergien entstehen
- Welche Investitionen Risiken bergen
Beispiel: Ein Unternehmen plant drei Digitalisierungsprojekte. Mit einer Projekt ROI Simulation erkennt es, dass Projekt A sofort Effizienzgewinne bringt, Projekt B nur mit Verzögerung wirkt und Projekt C hohe Unsicherheiten hat.
So werden Ressourcen gezielt verteilt – und das Ergebnis ist ein deutlich höherer Gesamt-ROI.
Algorithmus ROI Optimierung – datengetriebene Strategie
Die Algo ROI Optimierung ist der entscheidende Vorteil gegenüber klassischen Ansätzen.
- Entscheidungen werden nicht nur einmal getroffen, sondern ständig überprüft
- Strategien passen sich dynamisch an
- Unternehmen reagieren schneller auf Risiken und Chancen
- Dadurch entsteht ein dauerhaft optimierter ROI.
Strategische Planung mit Algorithmen
ROI-Berechnung ist kein Selbstzweck. Sie muss eingebettet sein in die strategische Planung eines Unternehmens. StratePlan™ verbindet ROI-Analysen mit strategischer Budgetallokation.
Das bedeutet:
- Investitionen werden im Kontext der Gesamtstrategie bewertet
- Der Algorithmus schlägt vor, wie Budgets verteilt werden sollten
- Algo Intelligence ersetzt Bauchgefühl durch datenbasierte Entscheidungen
So wird ROI zum Steuerungsinstrument für die gesamte Organisation.
ROI Optimierung Tool – warum StratePlan™ einzigartig ist
Es gibt viele Tools und Excel-Templates, die als „ROI Rechner“ dienen. Doch StratePlan™ geht weiter:
- Algo-gestützte Simulationen
- Dynamische Anpassungen
- Integration in bestehende Systeme
Ein klassisches ROI Optimierung Tool zeigt Zahlen. StratePlan™ zeigt Handlungsoptionen.
Business Intelligence ROI – Daten smart nutzen
Unternehmen investieren in BI-Systeme, um Daten zu sammeln und zu visualisieren. Doch oft bleibt es beim Reporting. Mit StratePlan™ wird Business Intelligence ROI Realität:
- Daten werden nicht nur dargestellt, sondern bewertet
- Aus BI-Informationen werden Handlungsempfehlungen
- Der Nutzen von BI-Investitionen wird transparent
So schlägt StratePlan™ die Brücke zwischen Reporting und Wertschöpfung.
ROI Forecasting mit Algorithmen – in die Zukunft blicken
Planungssicherheit ist entscheidend. Mit ROI Forecasting durch Algorithmen können Unternehmen verschiedene Zukunftsszenarien berechnen.
Beispiele:
- Wie wirkt sich eine Rezession auf den ROI aus?
- Wie verändert sich der ROI durch steigende Energiekosten?
- Welche Investition bleibt stabil, auch wenn Märkte schwanken?
Das gibt Unternehmen einen enormen Vorsprung.

11.08.2025 - Dr. Igor Kadoshchuk
DeepAnT in Critical Care: Intensive Care Patients Predictive Monitoring Anomaly Detection System
In modern intensive care units, every second counts. Critical changes in a patient’s condition can determine life or death within minutes. Despite highly advanced monitoring systems, doctors and nurses are often confronted with a flood of data: heart rate, oxygen saturation, blood pressure, respiratory rate, lab results, and numerous other vital parameters stream in real time. The challenge is not the lack of data, but the early detection of critical deviations before they become clinically apparent.
This is where DeepAnT comes in – an Intensive Care Patients Predictive Monitoring Anomaly Detection System that learns from multivariate time series, identifies patterns, and signals anomalies before critical events occur.
The Challenge in Intensive Care Units
Traditional ICU monitoring systems usually work with fixed threshold values. Example: if oxygen saturation drops below 90%, an alarm is triggered. The problem:
- Too many false alarms (caused by motion artifacts, short-term value fluctuations, or technical issues)
- Late detection – alarms are triggered only when values have already reached a critical level
- Alarm fatigue – medical staff get used to frequent false alarms, respond more slowly, or unconsciously ignore them
DeepAnT: Predictive Intelligence for Critical Patient Monitoring
DeepAnT is not a replacement for existing medical devices – it is a superior, learning intelligence layer that works between monitoring systems and the medical team.
The Predictive Real-Time Anomaly Detection Engine in DeepAnT simultaneously analyzes:
- Multivariate vital parameters (e.g., heart rate, blood pressure, SpO₂, respiratory rate, temperature)
- Trends in lab values and medication
- Temporal patterns (time of day, treatment phases, post-operative stages)
- Contextual information (ventilation status, medication administration, surgical history)
- Early Warning Instead of Reaction
Instead of reacting only to acute threshold breaches, DeepAnT detects subtle changes in the interplay of vital signs – long before they are visible to the human eye or become clinically evident.
Example: a slight but steady increase in respiratory rate, combined with a minimal drop in oxygen saturation and changes in heart rate variability, could be an early indicator of developing sepsis. DeepAnT would detect this and alert the team hours before a critical event.
Benefits in Clinical Practice
- Up to 70% reduction in false alarms
– Focus on truly relevant events - Early intervention
– Potentially life-saving time gains - Continuous learning
– System adapts to individual patient patterns - Integration with existing systems
– No hardware replacement required, integration via API or existing IT structures - Reduced staff workload
– Less alarm stress, more time for direct patient care
Application Scenarios
- Postoperative intensive monitoring – detection of complications after major surgery
- Sepsis prevention – early warning at the first signs of infection
- Cardiac intensive care – detection of arrhythmias or worsening heart failure
- Neonatology – early detection of apnea episodes in premature infants
Measurable Impact
In Test projects using DeepAnT results showed:
- 30–50% earlier detection of critical patient deterioration
- Significant reduction in alarm load per shift
- Greater safety for patients, families, and medical teams
Conclusion
The “Intensive care patients predictive monitoring anomaly detection system” DeepAnT offers a decisive advantage for modern ICUs: proactive medicine instead of reactive crisis intervention.
By combining predictive intelligence, multivariate time-series analysis, and continuous learning, it turns an overwhelming flood of data into a clear, actionable early warning mechanism. The result: fewer false alarms, better decisions, more time – and, in the best case, saved lives.

07.08.2025 - Dr. Igor Kadoshchuk
Modern Surveillance, Real Intelligence: How DeepAnT Enhances AI-Based Camera Systems
Modern surveillance systems increasingly rely on AI-powered analytics to automatically detect motion, unauthorized access, or suspicious behavior. Manufacturers promote their “intelligent video analytics” with promises of automated alerts and drastically reduced human monitoring needs. But the reality often looks quite different.
The Weakness of Today’s AI-Based Camera Systems
Numerous studies and user reports reveal that the precision of many commercial surveillance camera AI systems is only around 30–40%. In other words, 60–70% of generated alarms are false positives.
While this level of accuracy may be tolerable on a small scale, it becomes a serious operational challenge when camera numbers scale up and environments grow more complex:
- In high-traffic zones (e.g., train stations, airports, city centers), false alarm rates increase exponentially.
- Environmental changes like weather, lighting, animals, or reflections often trigger false alerts.
- Security control centers become overloaded with irrelevant signals.
- Teams experience “alarm fatigue,” eventually becoming desensitized to alerts and failing to react to genuine threats in time.
DeepAnT Performance as a Supervisory Intelligence for Existing Systems
This is where DeepAnT Performance comes into play—not as a replacement, but as a superior intelligence layer that monitors and improves existing systems. Positioned between the camera AI and the security control center, DeepAnT’s Predictive Real-Time Anomaly Detection Engine analyzes:
- Patterns from past false alarms
- Contextual data such as time, day of the week, weather, and local event density
- Parallel sensor readings (e.g., door contacts, motion sensors)
- Interactions across multivariate time series (e.g., multiple cameras in the same area)
Early Detection of False Alarms and Real Threats
DeepAnT Performance learns which alerts stem from systematic misinterpretations and filters them out before they reach operators. At the same time, DeepAnT identifies complex or hidden patterns that point to real security threats, even if the original camera AI missed them.
Key Benefits in Video Surveillance Use:
- 🚨 Up to 70% reduction in false alarms
- 👮♂️ Significant relief for security teams
- ✅ Improved response reliability in critical situations
- 🧠 Continuous AI improvement via feedback learning
- 🔌 Easy integration with existing VMS or API environments
Conclusion
Scaling modern security infrastructures requires more than adding cameras or boosting network speeds—it requires intelligent, adaptive systems that learn from patterns and evaluate security risks in context. DeepAnT delivers exactly that: a powerful, self-learning analytics layer that enhances your current surveillance systems while dramatically reducing the burden on human operators.
📩 More information: www.mainthink.de/deepant
📞 Or reach out to us directly at contact@mainthink.de

05.08.2025 - Dr. Igor Kadoshchuk
Unlocking the Future of Operational Intelligence: Predictive Real-Time Anomaly Detection in Multivariate Time Series with DeepAnT
In an increasingly complex and data-rich world, detecting anomalies in real time is no longer a luxury but a necessity. From financial institutions and manufacturing plants to IT systems, energy grids, and aviation, organizations operate on a constant stream of multivariate time series data. Hidden within this data are critical signals: precursors to system failures, fraud, cyberattacks, or process disruptions. The ability to detect these anomalies before they cause damage can make the difference between proactive control and reactive crisis management.
This is where DeepAnT steps in.
What is DeepAnT?
DeepAnT (Deep Anomaly Tracking) is a breakthrough AI solution developed by mAInthink that delivers predictive real-time anomaly detection in multivariate time series. It uses a custom-built deep learning architecture that learns from high-dimensional, noisy, and irregular time series data to detect early-warning signals across critical systems.
DeepAnT is not just another analytics tool. It is a self-learning system that combines the power of Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) to capture both short- and long-term dependencies in time series data, making it ideal for highly dynamic, real-time environments.
Why Predictive Anomaly Detection Matters
Most traditional systems are only capable of detecting anomalies after they occur, often when damage has already been done. These systems rely on static thresholds or rigid rules, which are often ill-suited for complex, interdependent variables in modern enterprises.
Predictive real-time anomaly detection, on the other hand, allows organizations to:
- Avoid downtime and failure costs
- Prevent fraud and data breaches
- Mitigate cascading disruptions
- Improve decision-making based on foresight rather than hindsight
- Reduce compliance and audit risks
How DeepAnT Works
DeepAnT ingests multiple streams of time series data and learns the normal patterns unique to each organization or system. These can include:
- Financial transactions
- Network traffic logs
- Sensor readings from machines or IoT devices
- Flight schedules
- Energy usage data
- Maintenance logs
The system then monitors these variables in real time, scoring deviations and identifying hidden correlations that indicate impending anomalies. Unlike static tools, DeepAnT continuously retrains itself to adapt to new data conditions, ensuring its predictions remain accurate.
DeepAnT's core architecture includes:
- CNN layers to extract local patterns across time intervals
- LSTM/RNN layers to capture sequential dependencies and trends
- Adaptive scoring engine that evaluates anomaly likelihood in real time
- API integration for automated alerts and control system responses
Use Cases of DeepAnT
1. Financial Sector
Banks and financial institutions face constant threats from fraud, duplicate transactions, and irregular cash flows. DeepAnT can monitor millions of transactions in real time and flag unusual patterns that precede fraud or compliance breaches.
Benefits:
- Early detection of money laundering or fraudulent transfers
- Reduced audit workload
- Enhanced trust and compliance integrity
2. IT and Cybersecurity
Enterprise IT systems generate vast logs from servers, databases, and applications. DeepAnT analyzes login attempts, traffic patterns, and system metrics to predict intrusions or breaches before they happen.
Benefits:
- Reduced downtime
- Faster incident response
- Real-time threat mitigation
3. Manufacturing and Industry 4.0
Sensor data from machines can show slight deviations long before a failure. DeepAnT catches these early, enabling predictive maintenance.
Benefits:
- Fewer production halts
- Optimized asset lifespan
- Reduced maintenance costs
4. Aviation and Logistics
Flight data, crew schedules, weather forecasts, and technical logs are all time-dependent and interlinked. DeepAnT monitors them simultaneously to prevent cascading delays.
Benefits:
- Improved on-time performance
- Reduced cost of disruptions
- Safer, more efficient operations
5. Energy and Utilities
Grid data often hides signals of imbalance or leakage. DeepAnT helps utilities balance loads and avoid outages.
Benefits:
- Real-time risk prevention
- Smoother supply-demand equilibrium
- Efficient resource allocation
DeepAnT vs. Traditional Methods
In recent benchmark tests, DeepAnT significantly outperformed legacy systems:
- ARIMA: Precision 0.772, Recall 0.783, F1 Score 0.777
- LSTM: Precision 0.868, Recall 0.826, F1 Score 0.846
- rPCA: Precision 0.919, Recall 0.898, F1 Score 0.908
- DeepAnT: Precision 0.959, Recall 0.928, F1 Score 0.943
(Source: DeepAnT White Paper, 2025)
These results show that DeepAnT significantly outperforms legacy methods in both predictive power and precision. Its ability to work in real time across multiple dimensions is unmatched.
Key Features
- Sub-second response times for live monitoring
- Multivariate compatibility: handles 10s to 100s of input streams
- Self-learning: minimal human intervention needed
- Scalable deployment: from SMB to enterprise-wide solutions
- Seamless integration with SCADA, ERP, MES, ITSM, financial tools
Business Impact
Organizations using DeepAnT have reported:
- Up to 60% fewer disruptions in operations
- Over 2.7 million EUR in savings from avoided downtime or fraud
- Significant reduction in manual audits and incident resolution
- Stronger regulatory compliance and documentation trails
Looking Ahead
As industries continue to digitize, the volume and complexity of data will only grow. DeepAnT positions organizations to not just survive but thrive in this reality. By replacing reactive workflows with predictive intelligence, businesses gain a competitive edge, mitigate risks early, and operate with a new level of foresight.
Conclusion
Predictive real-time anomaly detection in multivariate time series is not just a technological advantage—it's a strategic necessity. DeepAnT empowers organizations across sectors to transform their data into foresight, detect problems before they occur, and make smarter decisions faster.
Ready to experience the future of anomaly detection?
📍 Learn more or request a live demo at www.mainthink.de/deepant
📧 Contact us at contact@mainthink.de
CONTACT
Tel:.+49 6241305600
mAInthink GmbH
Hafenstraße 4d
67547 Worms - Germany.
Business hours
During this time, we are happy to answer your questions, provide initial consultations, support, and schedule appointments.
You can send us a message outside of business hours at any time – we will get back to you as soon as possible.
- Mo – Do
- 09:00 – 17:00
- Freitag
- 09:00 – 12:00
- Sa – So
- Geschlossen
